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The literature has shown that preservice
elementary school teachers (PSTs) struggle
to adequately attend to a number’s
multiplicative structure to determine
divisibility. This study describes an
intervention aimed at strengthening
preservice and in-service teachers’
procedural knowledge with respect to using
a number’s prime factorization to identify its
factors, and presents evidence of the impact
of the intervention. Results point toward
improved abilities to use a number’s prime
factorization to sort factors and nonfactors
across four factor subtypes, to create

factor lists, and to construct numbers with
particular divisibility properties. Implications
for mathematics teacher education include
providing specific materials and strategies
for strengthening preservice and in-service
teachers’ procedural knowledge.
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Introduction

Mathematics teacher educators should ask preservice
and in-service elementary school teachers questions

that support their ability to make sense of mathematics
(Conference Board of the Mathematical Sciences [CBMS],
2012). Such questions should include both how and why
mathematical procedures work. With this in mind, con-
sider the following two questions:

Q1: Find all the factors of the number 360.

Q2: Find all the factors of the number 23 X 32 X 5.

The first question, commonly asked of students in
elementary school, is often answered using an exhaustive

method where one trial divides 360 by 1, 2, 3, 4, etc., up
to the point where the quotient is less than the divisor.

Those integers that divide 360 (along with their corre-
sponding quotients) are identified as factors. Those inte-
gers that do not divide 360 are identified as nonfactors.
The second question, one that is less commonly asked of
students in elementary school, can be answered through
an application of the fundamental theorem of arithmetic
(FTA). This foundational result in number theory states
that every positive integer (except for the number 1) can
be represented as a product of one or more primes in
exactly one way, apart from rearrangement (Hardy &
Wright, 1979, pp. 2-3). An application of the FTA to Q2
allows us to discover that, for example, 2% X 3 =12 is

a factor because it can be multiplied by another integer
(2 X 3 X 5) =30 to arrive at the given number: (22 X 3)
X (2 X 3 X 5)=23x 32X 5. Similarly, (2 X 3 X 5) must
also be a factor of the given number. The FTA can also
help us determine that 21 = 7 X 3 is not a factor because
the given prime factorization, which is the only one that
exists for this number, does not include a 7, which is a
necessary prime factor of 21. Using the commutative

and associative properties of multiplication, one can

find every possible subset of the number’s prime factors
included in its prime factorization. The product of each
of these combinations represents a factor of the original
number; in this fashion, we arrive at the same answer to

Q2 as for Q1.

The point of this exercise is to consider the importance of
asking both questions of those who are preparing to teach
mathematics. The first question is, no doubt, important—
a generalization of the procedure that leads to its answer
is a fundamental skill that helps teachers answer the ques-
tion, “How can | find a number’s factors?” The second
question is equally important because, in the application
of the FTA to the analysis of factors, teachers discover an
answer to the question, “Why are only some numbers
factors of a given number?” We argue that teachers who
study both of these approaches develop a deeper proce-
dural knowledge (Rittle-Johnson, Star, & Durkin, 2012;
Star, 2005) of the multiplicative structure of numbers

and, thus, are in a better position to enact instruction that
promotes students’ procedural fluency (National Research
Council, 2001).

Why Focus on Multiplicative Structure?

National reports and existing research identify the impor-
tance of developing teachers’ knowledge of the math-
ematics they teach to students in K-grade 12 (Association
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of Mathematics Teacher Educators [AMTE], 2017; CBMS,
2001, 2012; Greenberg & Walsh, 2008; Ma, 1999;
National Mathematics Advisory Panel, 2008). If students
in K—grade 8 are to develop mathematical proficiency
(National Research Council, 2001), then teachers must
develop both knowledge of concepts and relationships
and a deep and flexible knowledge of mathematical
procedures (Ball, Thames, & Phelps, 2008; Star, 2005).
The Standards for Preparing Teachers of Mathemat-

ics (AMTE, 2017) affirms the importance of attending

to both conceptual and procedural knowledge, stating
that “well-prepared beginning teachers of mathematics
understand and solve problems in more than one way,
explain the meanings of key concepts, and explain the
mathematical rationales underlying key procedures” (p.
8). However, the research literature on mathematical
knowledge has historically prioritized conceptual knowl-
edge above procedural knowledge (Star, 2005). Given its
importance in developing students” mathematical profi-
ciency, we take up Star’s (2005) call for a renewed focus
on procedural knowledge in the context of elementary
teacher preparation.

Although various definitions exist, we follow the National
Research Council (2001), which refers to procedural
knowledge as procedural fluency and defines it as
“knowledge of procedures, knowledge of when and
how to use them appropriately, and skill in performing
them flexibly, accurately, and efficiently” (p. 121). One
indicator of deep procedural knowledge is procedural
flexibility, which refers to knowing multiple procedures
for solving particular problems and being able to make
efficient choices around which of those procedures to
use in particular situations (Rittle-Johnson et al., 2012;
Star, 2005). Research has shown that the procedural
knowledge of many preservice elementary teachers
(PSTs) is superficial and disconnected (Browning, Edson,
Kimani, & Aslan-Tutak, 2014; Kastberg & Morton, 2014;
Thanheiser, Philipp, Fasteen, Strand, & Mills, 2013;
Thanheiser, Whitacre, & Roy, 2014). In line with Whitacre
and Nickerson (2016), we take the perspective that such
characterizations of PSTs’ knowledge stem from a lack
of opportunity to develop deeper understandings during
their K-grade 12 mathematics coursework. In fact, stud-
ies do show that PSTs can gain richer understandings of
mathematical procedures through instruction (Feldman,
2012; McClain, 2003; Simon & Blume, 1994; Whitacre &
Nickerson, 2016).

One content area that has been particularly challenging
for PSTs but is largely ignored in the current literature

is the use of multiplicative structure to determine divis-
ibility. We use Zazkis and Campbell’s (1996a) definition
of multiplicative structure: the “conceptual attributes and
relations pertaining to and implied by the decomposition
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of natural numbers as unique products of prime factors”
(p. 541). Zazkis and Campbell (1996a, 1996b) showed
that PSTs exhibit “procedural attachments” when solving
divisibility problems. When asked to identify several fac-
tors of M = 33 X 52 X 7, the majority of PSTs first com-
puted the whole number value of M and then used trial
division to test possible factors. Some research suggests
that PSTs’ procedural attachments are due to an inabil-
ity or unwillingness to treat a number’s prime-factored
form as an equivalent quantity (Zazkis & Gadowsky,
2001). However, these supposed deficiencies may be the
result of insufficient opportunities for PSTs to work with
prime-factored form (Feldman, 2012; Zazkis & Campbell,
1996b). Even instruction that successfully emphasizes rote
procedure may impede PSTs’ use of multiplicative struc-
ture, thereby inhibiting stronger schemas of multiplication
and division concepts (Brown, Thomas, & Tolias, 2002).

This research points to a pressing need for mathematics
teacher educators to support PSTs’ attention to multiplica-
tive structure, including its core underlying concept, the
fundamental theorem of arithmetic (FTA). First, multipli-
cative structure provides opportunities to examine several
foundational mathematical ideas and properties that
elementary school teachers need to know and be able
to teach, such as prime and composite numbers and the
commutative and associative properties (Griffiths, 2013).
These foundational topics form the basis for students’
understanding and use of a wide range of arithmetic
operations and computational strategies (National Coun-
cil of Teachers of Mathematics [NCTM], 2000; National
Research Council, 2001). In fact, Griffiths (2013) refers
to the FTA as “one of the cornerstones of elementary
mathematics in that it underpins anything associated
with the multiplicative properties of the integers . . .”

(p. 78). Second, multiplicative structure is embedded in
more advanced topics on the educational horizon, such
as greatest common factor and least common mul-

tiple, rational number operations, polynomial functions,
and rational functions (Feldman, 2014; NCTM, 2000;
Vergnaud, 1988).

Attending to multiplicative structure also provides much
needed opportunities for PSTs to make use of structure,
a mathematical practice described in the Common Core
State Standards (National Governors Association Cen-
ter for Best Practices and Council of Chief State School
Officers, 2010). A focus on structure includes looking for
patterns and decomposing systems into their component
parts. Decomposing numbers multiplicatively brings our
number systems’ building blocks, prime numbers, to the
foreground and provides rich opportunities for conjec-
ture-making and generalizing (Cuoco, Goldenberg, &
Mark, 1996). Examining mathematical structure also sup-
ports richer understandings, connects concepts to proce-
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dures, and shifts student learning away from memorizing
(Mason, Stephens, & Watson, 2009). Structure can also
help teachers recognize the limitations of overemphasiz-
ing rote procedures during instruction (Vale, McAndrew,
& Krishnan, 2011). As such, there are likely both math-
ematical and pedagogical affordances in addressing
multiplicative structure in content courses for PSTs.

In this article, we describe the impact of an intervention
aimed at deepening preservice and in-service elemen-
tary teachers’ procedural knowledge of the multiplica-
tive structure of number as it pertains to divisibility. The
intervention makes central the role of prime factorization
as a tool for promoting such understandings.

Background Literature

This study adopts a constructivist perspective on learn-
ing (Dubinsky, 1991; Piaget, 1985; von Glasersfeld,
1987). Learners construct new knowledge by organizing
their experiences through processes of assimilation and
accommodation (Piaget, 1985). The learner may assimi-
late a new experience into prior knowledge, or if a new
experience conflicts with what he or she already knows,
the learner may accommodate that new experience by
revising previous understandings.

Following this perspective, prior research has focused

on PSTs' difficulties in using prime factorization to solve
divisibility problems. Most of the research in this area

has been conducted by Rina Zazkis and her colleagues.
For example, interviews with 21 PSTs found that, when
asked to find the factors of a number expressed in prime-
factored form, the majority of participants first computed
the number’s whole number value and then performed
trial division (Zazkis & Campbell, 1996a). Zazkis and
Gadowsky (2001) framed this finding as an inability to use
the transparent features of prime factorization (e.g., the
prime-factored representation of N = 23 X 3% X 53 makes
it transparent that 5 is a factor of N and that 7 is not a
factor of N). Brown et al. (2002) called for pedagogical
interventions to emphasize PSTs’ flexible reasoning with
numbers written in prime-factored form.

Zazkis and colleagues also sought to characterize the
nature of PSTs” knowledge of number theory topics.
When confronted with a number written in prime-fac-
tored form, PSTs tend to more easily identify a number’s
factors than its nonfactors and a number’s prime factors
than its composite factors (Zazkis & Campbell, 19964,
1996b). Zazkis and Campbell (1996b) identified a lack
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of appreciation for the uniqueness feature of the FTA as
a possible explanation: “Whereas the existence of prime
decomposition may be taken for granted, the uniqueness
of prime decomposition appears to be counterintuitive
and often a possibility of different prime decompositions
is assumed” (p. 217).

Only a handful of studies have examined the efficacy

of classroom interventions aimed at improving PSTs’
knowledge of divisibility and prime factorization. Feld-
man (2012) implemented a set of number theory tasks
focused on the use of prime factorization with 59 preser-
vice elementary teachers. He found that their ability to
identify factors and nonfactors, as well as solve greatest
common factor (GCF) and least common multiple (LCM)
problems, improved significantly. Sinclair, Zazkis, and
Liljedahl (2004) and Liljedahl, Sinclair, and Zazkis (2006)
used a computer applet in which preservice elementary
teachers used an interactive array of whole numbers to
explore visual patterns generated by factors and mul-
tiples. The researchers found that the combined effects
of visualization and experimentation led to a more robust
understanding of the multiplicative structure of natural
numbers, primes, composites, and evens and odds.

Despite the focused research on PSTs" knowledge of
prime factorization and divisibility concepts, little is
known about the kinds of mathematical tasks that can
best support their learning. Incorporating the successes
described in previous studies, this paper presents a
sequence of three instructional lessons that is meant to
promote teachers’ ability to use prime factorization to
solve divisibility problems.

The Intervention

Our intervention is a sequence of three instructional
lessons and two accompanying homework assignments
loosely adapted from an NSF-funded project' in which
the first author was a co-principal investigator. The over-
arching aim of the intervention is to strengthen partici-
pants’ ability to recognize and make use of a number’s
multiplicative structure, which is transparently provided
by its prime factorization. Each lesson consists of cycles
of problem sets and discussion questions. Each cycle
consists of short sets of interrelated mathematical prob-
lems designed to be cognitively demanding: Participants
are asked to connect procedures with underlying con-
cepts, make and test their own conjectures, and provide
reasoning for their ideas (Stein, Smith, Henningsen, &
Silver, 2009). Participants work in small groups of three

1 Original lesson materials were developed by a team of mathematics teacher educators at Boston University as part of the Elementary Preser-
vice Teachers’ Mathematics Project: Developing Faculty Expertise, under NSF grant no. TUES-1323156.
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or four to complete one set of problems, as the instructor
(each author) circulates from group to group observing,
listening, and interrupting only to ask guiding and probing
questions. Each set is followed by whole-class discussion
questions meant to help groups synthesize and articulate
their thinking about the preceding set of problems. Dur-
ing discussions, the instructor encourages participants to
explain and justify their own mathematical thinking and
avoids providing solutions for them. Following discussion,
a new cycle consisting of another short set of problems
and discussion questions begins. All three lessons and
their associated homework assignments are provided in

Appendix A.

The first lesson is a 30-minute lesson introducing par-
ticipants to the fundamental theorem of arithmetic

by exploring factor trees and factored forms of whole
numbers. To make sense of the FTA, participants are

first asked to construct different factor trees for the same
number (see Figure 1) and then explain how these factor
trees are similar to and different from one another. They
are then asked to compare three numbers written as
(nonprime) factorizations and to determine, without multi-
plying, which number has the greatest value.

The purpose of this task is to make salient the unique-
ness feature of the FTA. The lesson concludes with two
discussion questions. The first question asks participants
to discuss the differences between a factorization of a
number and a prime factorization of a number. The sec-
ond question presents a formal definition of the FTA and
asks participants to explain the meaning of the theorem
in their own words. Here, our goal is to encourage par-
ticipants to deepen their understanding of the theorem by
translating its meaning into a more personal statement.

When enacting this lesson, we find it useful to first intro-
duce the concept of factor trees and then let participants
explore the remaining problems in groups with minimal
instructor interference. Although most participants do not
struggle to explain the meaning of the FTA, we recognize
that simply explaining the theorem does not guarantee
understanding (Zazkis & Campbell, 1996b). Given the
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Figure 1. Using factor trees to find the prime factorization of 72.

63

opportunity to explore and with explicit prompting from
the instructor, participants are able to construct useful
metaphors that reflect the foundational importance of the
FTA (e.g., number DNA or fingerprint).

The first lesson is followed by a homework assignment.
Participants are given a 10-by-10 gridded array numbered
from 1-100 (see Figure 2) and asked to fill each grid
square with the corresponding prime factorization. Par-
ticipants identify patterns in the array and any shortcuts
to constructing each prime factorization. For example, in
Figure 2, one participant discovers that most primes end
in either 1, 3, 7, or 9, calling these columns in the grid
“prime rows.” The array serves as a participant-generated
visualization tool that will be employed in Lesson 2 to
explore the transparent features of prime-factored form.
This approach not only served as useful practice for find-
ing prime factorizations, it also capitalized on the results
of previous studies (i.e., Liljedahl et al., 2006; Sinclair et
al., 2004) that employed visual array representations to
support PSTs” attention to the multiplicative structure of
counting numbers.

The goal of Lesson 2 (approximately 90 minutes) is to
generate a method for finding the factors of a number
using the number’s prime factorization. Initially, small
groups are assigned a particular number (e.g., 90) and
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Figure 2. A completed array showing the prime factorizations of
the first 100 counting numbers.
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instructed to use their completed arrays to find its factors
in both whole number and prime-factored forms (see
Figure 3). Assigning a different number to each group
gives participants an opportunity to address a variety

of multiplicative structures in subsequent whole-class
discussions. We used the following numbers: 90, 96, 84,
80, 78, and 72. Participants use their arrays to make and
test conjectures for how the prime factorizations of the
factors of a number are related to its prime factorization.
The instructor then facilitates a whole-class discussion in
which each group presents its conjectures. In our experi-
ence, participants can identify the correct relationship but
struggle to justify it. Instructors can support participants’
reasoning by pressing them to generalize their thinking.
Questions such as “I see your conjecture works for 90,
but how do you know it works for all numbers?” can help
them begin to consider the structural reasons—commuta-
tive and associative properties—for why the prime factors
of a factor (e.g., 2 X 3 X 5) are present within the prime
factorization of its multiple (e.g., 2 X 32 X 5). Participants
may need to generate many numerical examples before
they can construct robust justifications.

Participants then use their conjectures to solve a variety
of divisibility problems, including the following: “Let

K =312 X 832 be the prime factorization of K. List every
counting number that is a factor of K without comput-

Encouraging Use of Multiplicative Structure

ing the value of K. Explain briefly how to do this.” The
purpose of this problem is to force participants to attend
to the multiplicative structure of a number by prohibit-
ing the use of long division. Participants must build on
their work in earlier parts of the lesson to find products of
combinations of prime factors (i.e., 31, 83, 31 X 83, 312,
832, 312 X 83, 31 X 832, 1, and 312 X 83?). Finding a sys-
tematic way to identify every combination is challenging
and may result in participants inadvertently skipping over
some factors. Nevertheless, we found it useful to wait
until the whole-class discussion to address this potential
challenge. Questions such as “How do you know you
found every factor?” and “How can we keep track of all
combinations so we don’t miss any?” prompted partici-
pants to develop more robust factoring strategies (e.g.,
identifying factors whose prime factorizations possess
exactly 1 prime, 2 primes, 3 primes, and so on).

The two discussion questions at the conclusion of Lesson
2 ask participants to (a) describe a method for finding
the factors of a number using the number’s prime fac-
torization, and (b) use prime factorization to describe

a new way to define a factor of a number. The first
question challenges participants’ inclination to revert to
whole-number long division (i.e., Zazkis, 1998; Zazkis &
Campbell, 1996a). The second question attempts to shift
participants’ notion of factor from one that is linked to
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Figure 3. Example of participant’s use of an array to find the factors of 90.
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the division operation to one that attends to a number’s
multiplicative structure. Throughout these discussions, we
found it useful to repeatedly push participants to explain
how the FTA supports their thinking when identifying fac-
tors and nonfactors. Figure 4 displays responses to both
questions from two different participants.

In Lesson 3 (approximately 60 minutes), participants

use their knowledge of the relation between a number’s
prime factorization and its factors to develop a general
rule for finding the number of factors of a number using
its prime factorization. Participants first generate count-
ing numbers with 2, 3, 4, 5, and 6 factors (see Feldman,
2014; Teppo, 2002) and describe their structures. For
example, a number with exactly three distinct factors
must be the square of a prime; a number with four fac-
tors must be either the cube of a prime or the product of
two distinct primes. When enacting this task, we pro-
vided participants with a lot of time to generate different
numbers and test conjectures. We circulated from group
to group and listened for different conjectures. What we
heard helped us determine which groups to call on to
present during whole-class discussion.

Participants then use this work to find the number of
factors of prime powers (e.g., 2" and products of two
distinct prime powers (e.g., 23 X 3?). They recognize that
2" has n + 1 factors and that 23 X 32 has 4 X 3, or 12,
factors. The lesson concludes with participants explain-
ing how it is possible to determine the number of factors
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of a number from its prime factorization without finding
its factors. During this discussion, participants use their
prior work with prime powers to make two generaliza-
tions: (a) Any prime power, p", has n + 1 factors since
its factors are p®, p', p?, P, ..., p" and (b) any number
written as a sequence of prime powers, p, py3 ps3 pom,
has (n, + 1)(n, + Ning+1) ... (0, +1) factors. During
our enactments, we pushed participants to explain why
this formula makes sense, with specific attention to why
1 is added to each exponent and why these sums are
multiplied together. We have found that some partici-
pants reverted back to the systematic approach devised
in Lesson 2 for listing out every factor as a way to support
this reasoning. Presenting a simpler case (e.g., 2> X 3?)
and asking groups to devise a visual (e.g., tree diagrams,
tables) to show its factors can help facilitate this work.

Homework 2 is the final assignment of the intervention
and serves to reinforce participants” ability to attend

to multiplicative structure. Each of the seven questions
requires participants to show their work and justify their
mathematical thinking. An example follows:

A number, X, has 10 and 3 as two of its factors. What
other number(s) must be factors of X? How do you know?

Other questions address common student misconcep-
tions about factors that can be resolved by appealing to
the multiplicative structure of counting numbers (Zazkis,
1999). An example of this type of question follows:

a) Describe a method for finding the factors of a num-
ber using the number’s prime factorization

b) A traditional definition of a factor of a number N is as
follows: “The number, a, is a factor of N if
N = a - b, where a and b are whole numbers.” Use
prime factorization to describe a new way to define a
factor of a number.
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Figure 4. Lesson 2 group discussion questions and student responses.
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If a fifth grader states, “Larger numbers have more factors
than smaller numbers,” what numbers will you give him
to investigate? Why those numbers?

Methodology

To investigate the impact of the three-lesson sequence
on teachers’ use of multiplicative structure, a classroom
intervention was conducted at two large universities in
two different states. Participants (n = 69) were under-
graduate and graduate students enrolled in mathemat-
ics content courses for both preservice and in-service
elementary and special education teachers. All partici-
pants were seeking their teaching license as part of their
university coursework. Of the 69 participants, 47 were
undergraduate preservice elementary teachers enrolled at
one of the two universities in the study. The remaining 22
participants were graduate in-service teachers majoring
in either elementary or special education at the second
university. Since the majority (68%) of graduate students
in the sample completed their undergraduate course-
work the prior year and nearly all were in their first year
of classroom teaching, we did not distinguish between
undergraduate and graduate participants for analysis
purposes. Additionally, we did not distinguish between
elementary and special education majors because both
share the same mathematics content requirements for
licensure in the states where the experiment was con-
ducted. We recognize, however, that the grouping of
elementary and special education preservice and in-ser-
vice teachers in this sample may not reflect more general
contexts across states.

Encouraging Use of Multiplicative Structure

Participants were asked to complete a pretest before the
start of the intervention and a posttest approximately
two weeks after the conclusion of the intervention. The
intervention consisted of the three in-class lessons and
two out-of-class homework assignments described above.
The pretest and posttest were developed and scored by
the authors for the purposes of answering the research
questions. Three identical question types were used on
both the pretest and the posttest. Questions were taken
or adapted from prior research on teachers’ knowledge
of multiplicative structure (Zazkis & Campbell, 1996a).
Numerical values were changed from pretest to posttest
in Questions 1 and 2, but across all questions, partici-
pants were asked to show their work or provide their
reasoning. Table 1 lists each test question for both the
pretest and the posttest. The following research question
with three subquestions guided the study:

1. What is the impact of an intervention focusing on the
multiplicative structure of number on preservice and
in-service elementary teachers’ procedural knowl-
edge as it relates to factors and prime factorization?

(@) Is participation in the intervention associated
with improvements in preservice and in-service
elementary teachers’ abilities to use a number’s
prime factorization to identify (a) prime factors,
(b) prime nonfactors, (c) composite factors, and (d)
composite nonfactors?

(b) Is participation in the intervention associated
with improvements in preservice and in-service

Table 1
Pretest and Posttest Questions
No. Pretest Posttest
1 Consider the number N = 32 X 54 X 11 X 173. Without Consider the number N = 23 x 5% X 72 X 13. Without
calculating the value of N, determine whether each of calculating the value of N, determine whether each of
the following is a factor of N. Justify each briefly. the following is a factor of N. Justify each briefly.
@5 M19 ©15 (21 (75 @11 ()7 ©14 (D21 (e)98
2a List all the factors of 225. Show how you found all List all the factors of 300. Show how you found all
of them. of them.
2b List all of the factors of 52 X 72. Show how you found all  List all of the factors of 5> X 7 X 13%. Show how you
of them. found all of them.
3 What is the smallest positive integer that has the first ten What is the smallest positive integer that has the first ten

counting numbers, 1-10, as its factors? Show or explain
your work so that others can follow your logic.

Note: You may leave your answer in factored form.

counting numbers, 1-10, as its factors? Show or explain
your work so that others can follow your logic.

Note: You may leave your answer in factored form.
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elementary teachers’ abilities to make use of prime
factorization to generate a list of factors?

(0) Is participation in the intervention associated with
improvement in preservice and in-service elemen-
tary teachers’ abilities to use prime factorization to
identify numbers with given factors?

Question Ta assesses participants’ abilities to deter-
mine whether a given number is a factor of a number
expressed in prime-factored form. Directions prohibit
converting the number’s prime factorization to whole
number form because the purpose is to assess partici-
pants’ ability to use a number’s prime factorization. The
purpose behind Question 1b is to determine the extent
to which participants can use prime-factored and whole
number forms to determine factors. Within each test,
both numbers are intentionally chosen to have the same
multiplicative structure to minimize any differences in
complexity (e.g., 225 and 52 X 72 are both the prod-
uct of the squares of two distinct primes). Question 1c

is meant to challenge participants to use multiplicative
structure to construct a number, given a set of known
factors. Constructing a number from known factors is an
example of what Dubinsky (1991) refers to as “reversal,”
a mental construction in which the individual reverses
a process to construct a new process. Reversal is chal-
lenging because it requires the individual to have already
learned the process that needs reversing (Dubinsky,
1991). Adding to the challenge of Question Tc is that the
first 10 counting numbers are not relatively prime, so
simply multiplying them together does not result in the
correct answer.

Test scoring was conducted using a researcher-developed
rubric (see Appendix B). Each test was scored out of 25
points, of which 14 points (56%) were given for correct
numerical answers, and 11 points (44%) were given for
clear and accurate reasoning. Both authors determined
inter-rater reliability by independently scoring the same
subset of the data (21.7% of the data, or 15 of 69 pre-
tests and posttests). Analysis of the independent scoring
revealed 82.5% agreement. Discrepancies in scoring
were resolved via discussion and rubric clarification until
100% agreement was achieved. Once reliability had been
established, the remaining data were divided equally
between the two authors and scored separately.

Findings

In this section, we present the results of the study
as they pertain to the research question and its
three subquestions.

67

Research Question 1: What is the

impact of an intervention focusing on

the multiplicative structure of number

on preservice and in-service elementary
teachers’ procedural knowledge as it relates
to factors and prime factorization?

Analysis of the data across all pretest and posttest ques-
tions revealed that participation in the intervention is
associated with an increase in participants’ procedural
knowledge related to using a number’s multiplicative
structure to solve problems. After we verified that founda-
tional assumptions were met, a paired sample t-test was
conducted to compare participants’ mean scores on the
pretest to their mean scores on the posttest. Results of the
t-test indicated a significant difference between partici-
pants’ pretest (M = 8.81 [35.2%], SD = 4.40) and post-
test scores (M =17.78 (71.1%), SD = 4.97); t(68) = —13.88,
p < 0.05). Effect size (d = 1.9) was also computed for

this analysis. The results suggest that participants’ mean
scores on the posttest were significantly greater than their
mean scores on the pretest, and that this difference is
large. As such, the intervention appears to have sup-
ported participants’ abilities to use prime factorization to
successfully solve problems related to divisibility. In the
following, we share evidence that shows how the par-
ticipants’ responses to the exam questions demonstrate a
deeper understanding of the procedures for using prime
factorization to identify factors and determine numbers
with given factors.

Research Question 1a: Is participation in the
intervention associated with improvements
in preservice and in-service elementary
teachers’ abilities to use a number’s prime
factorization to identify (a) prime factors, (b)
prime nonfactors, (c) composite factors, and
(d) composite nonfactors?

The data provided more specific information regarding
participants’ use of multiplicative structure to identify a
number’s prime factors, prime nonfactors, composite fac-
tors, and composite nonfactors. Prior research has shown
that PSTs typically find it more challenging to identify
nonfactors than factors and composite factors than prime
factors (Zazkis & Campbell, 1996a, 1996b). Table 2
shows mean scores, as a percent of available points on
the scoring rubric, for Questions Ta—Te on both pretest
and posttests. The table shows that participants improved
in their ability to identify factors across all divisor types.
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Table 2
Mean Scores for Questions la—Tle

Encouraging Use of Multiplicative Structure

Question Divisor Type Given Pretest (%) Posttest (%)
Ta Prime factor 62.3 83.3
1b Prime nonfactor 46.4 81.2
1c Composite factor of form p; X p, 46.4 78.3
1d Composite nonfactor of form p, X p, 319 70.3
Te Composite factor of form p,? X p? 38.4 75.4

Differences in participants’ success rates on various types
of problems diminished following the intervention. Prior
to the intervention, participants showed a marked differ-
ence in their ability to identify prime (62.3%) versus com-
posite (46.4%) factors. Following the intervention, success
rates in identifying prime (83.3%) and composite (78.3%)
factors increased although the difference between these
two divisor types diminished. The same result occurred
even when participants were faced with a more challeng-
ing composite factor as in Question 1Te. Participants’ abili-
ties to identify factors versus nonfactors showed similar
trends. Before the intervention, participants were much
more proficient at identifying prime factors (62.3%) than
prime nonfactors (46.4%), but they were nearly equally
proficient in these abilities after the intervention (83.3%
and 81.2%, respectively). Similarly, before the interven-
tion, participants were more proficient at identifying com-
posite factors (46.4%) than composite nonfactors (31.9%).
After the intervention, participant scores increased for
both types, but the differences between the success rates
decreased (78.3% for composite factors and 70.3% for
composite nonfactors).

Research Question 1b: Is participation

in the intervention associated with
improvements in preservice and in-service
elementary teachers’ abilities to make use
of prime factorization to generate a list of
factors?

Prior research shows that PSTs struggle to use a number’s
prime factorization to generate its factors and instead
convert to whole number form and use long division
(Zazkis & Campbell, 1996a). To determine the extent

to which the intervention can support preservice and
in-service teachers’ use of prime-factored form to gener-
ate factors, the study analyzed results from Questions 2a
and 2b. In these questions, participants were asked to
construct all of the factors of a particular number writ-
ten in whole number (2a) and prime-factored (2b) forms

(see Table 1). Participants were awarded credit in Ques-
tion 2a for finding all possible factors using any method.
Participants were awarded credit in Question 2b only

if they made use of prime factorization in the construc-
tion of their response. Table 3 shows the mean scores,
as a percent of available points on the scoring rubric, for
both questions.

The pretest results support findings from prior research.
Participants had more difficulty identifying factors of
numbers in prime-factored form (25.5%) than in whole-
number form (40.9%). Following the intervention, partici-
pants improved their ability to find the factors of numbers
written in prime-factored (69.6%) and whole-number
forms (72.5%).

Of greater interest is that the difference in success rates
between the two categories diminished to nearly zero
from pretest to posttest. Following the intervention, par-
ticipants were nearly equally adept at finding the factors
of a number using either form. In fact, many participants
voluntarily used prime-factored form even when it was
not explicitly called for, as illustrated by the following
participant’s response to question 2(a) on the posttest (see
Figure 5).

This finding suggests that, with respect to determining
divisibility, the intervention may have elevated par-
ticipants’ abilities to use prime-factored form to a level
comparable to using whole-number form. Although
more research is needed to examine whether an empha-
sis on multiplicative structure can overcome teachers’

Table 3
Mean Scores for Question 2

Question Pretest (%) Posttest (%)
2a 40.9 72.5
2b 25.5 69.6
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Figure 5. Using prime factorization to find all of the factors of 300.

preference for whole-number forms, this finding does
suggest that the intervention may support preservice
and in-service teachers in leveraging an alternative
representation to whole-number form when working
with divisibility.

Research Question 1c: Is participation in the
intervention associated with improvement
in preservice and in-service elementary
teachers’ abilities to use prime factorization
to identify numbers with given factors?

Our analyses thus far have addressed participants’ ability
to use a number’s multiplicative structure to identify and
construct factors and nonfactors. Question 3 on the pre-
test and posttest examines the reverse application of this
knowledge—identifying the least number that is divisible
by a set of given factors. The question states, “What is
the smallest positive integer that has the first ten counting
numbers, 1-10, as its factors? Show or explain your work
so that others can follow your logic.”

Data analysis of Question 3 revealed that participants’
ability to construct a number given its factors was
extremely weak prior to instruction (19.7% average
score). Seventy percent of the participants either made
no attempt or erroneously multiplied the first 10 count-
ing numbers together. Approximately 16% of participants
were able to identify the correct answer (2,520) but did
not provide any reasoning. No participant found the cor-
rect answer and provided complete reasoning.

Following instruction, participants’ ability to construct
a number from given factors improved (58.3% average

score). Participants’ work was now characterized by the
use of prime factorization to determine the answer as well
as greater attention to the impact of shared factors on the
prime factorization of the answer. Slightly more than 78%
found the correct answer; nearly 50% were able to pro-
vide complete or nearly complete reasoning. Moreover,
participants’ reasoning revealed their growing recognition
of the relationship between factors and prime factoriza-
tion. Figure 6 illustrates two participants’ responses to
Question 3, wherein both explain that the prime factor-
ization of a number must include the prime factorization
of each of its factors. Although more research is needed
to determine the extent to which participants were able
to reconceptualize their prior notions of factor, the data
do suggest that attention to multiplicative structure con-
tributed to participants’ ability to effectively reverse the
process of identifying a number’s factors.

Discussion

This study serves as a much-needed example of preser-
vice and in-service elementary and special education
teachers’ productive mathematical learning. Contrary
to prior research (Zazkis & Campbell, 1996a, 1996b;
Zazkis & Gadowsky, 2001), participants in this study
were capable of attending to multiplicative structure

in ways that strengthened their procedural knowledge.
Participants were able to coordinate a number’s prime
factors, identify factors and nonfactors, and reverse that
process to construct numbers with known factors. By
the end of the intervention, participants also began to
reconsider their definition of factor, from “any number
that evenly divides” to “any subset of a number’s prime
factorization.” Although prior research often focuses on
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Figure 6. Articulating the relationship between factors and prime factorization.

the misconceptions PSTs hold with respect to particular
mathematics content (see Thanheiser & Browning, 2014),
this study serves as a positive example of the ways in
which preservice and in-service teachers’ knowledge
can grow. Such examples are critical if the field wishes to
prepare knowledgeable teachers.

This study also brings to the foreground the potential
benefits of encouraging preservice and in-service teach-
ers to grapple with particular numerical representations.
Although attending to multiple representations is consid-
ered a high-leverage practice (NCTM, 2014), strategically
restricting learners’ focus to a single representation is not
as frequently addressed. We posit that, by restricting their
work to prime-factored form, the intervention created a
level of uncertainty (Zaslavsky, 2005) for participants that
encouraged them to reconsider and, in some cases, refine
their previous notions of divisibility.

Participants’ consistent use of multiplicative structure
and their ability to articulate the reasoning behind its use
are evidence of strengthening procedural knowledge of

finding a number’s factors. By pressing participants to
show and explain their thinking using a novel mathemati-
cal representation, mathematics teacher educators may
provide teachers with greater flexibility in noticing and
responding to their own students’ thinking. More research
is needed, however, to determine whether participants
developed the procedural flexibility (Rittle-Johnson et

al., 2012) to determine when using one numerical form

is more efficient than using the other. When enact-

ing instruction, mathematics teacher educators should
consider their lessons’ learning goals and their preservice
and in-service teachers’ prior knowledge to determine
whether, and to what extent, a particular representation
should be emphasized.

The intervention also provides teacher educators

with research-based curriculum materials designed to
strengthen preservice and in-service teachers’ procedural
knowledge of multiplicative structure. The lesson struc-
ture—cycles of short subsets of cognitively demanding
problems following by discussion questions—creates mul-
tiple opportunities to revisit and refine one’s mathematical
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thinking in both small-group and whole-class formats.
Because the ways in which lessons are implemented in
the classroom impact their quality (Stein et al., 2009),
teacher educators looking to use these materials should
give practicing and future teachers a significant amount of
time to explore problems in small groups and share their
thinking as a whole class. Although we recognize that
mathematics teacher educators must often move quickly
to cover a broad range of topics or are required to imple-
ment specific department-mandated curriculum materials,
we contend that this lesson structure presents a poten-
tially effective design feature for mathematical lessons
across topics (Simon, 1994).

In related research, we have also observed that preservice
teachers’ attention to multiplicative structure supported
the use of efficient methods for computing greatest com-
mon factors and least common multiples (Feldman, 2012).
Future study is needed to investigate whether attention

to multiplicative structure leads to deeper procedural
knowledge of other K-12 topics, including operating with
fractions, solving missing-value proportion problems, and
factoring polynomials.
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Appendix A: The Sequence of Lessons for the
Curricular Intervention

Lesson 1

1. In a factor tree, numbers are repeatedly factored until one reaches a prime number at the end of each branch.
Below is an example of a factor tree for 72. Create two different factor trees for 72.

72

N

2 36

7

. 18

7N

2 9

Fa

3 3

(@) What is the same about all three factor trees? What is different about them?

(b) Use the factor trees above to write 72 as a product of prime numbers. This representation of 72 is called a
prime factorization of 72.

2. Consider the following factorizations of R, N, and K:

R=32X42X5
K=16 X 45
N =18 X 40

Without multiplying, determine which has the greatest value. Explain how you know.

Group Discussion Questions

e What is the difference between the prime factorization of a number and the factorization of that same number?

e The fundamental theorem of arithmetic states that any composite number can be decomposed into a product of
prime numbers, and that this product is unique. What does this theorem mean?
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Lesson 2

1.

Briefly check your prehomework results with your group, making sure you agree on the prime factorizations in the
grid. Also share any patterns and/or discoveries made during the prehomework. Write 2-3 discoveries that your
group agrees on below.

2. (@) You are assigned the number ____ . Using your prehomework grid, use a highlighter to color the cells
of all the factors of that number.
(b) Once you have finished, make a list below of that number’s factors and the prime factorization of each factor.
Factors of Prime Factorizations

(c) How are the prime factorizations of the factors of your number related to the prime factorization of
your number?

(d) Does your conjecture from part (c) hold true for other numbers and their factors? Confer with other members
of your group by examining their data from part (b).

Group Discussion Question

How are the prime factorizations of the factors of a number, n, related to the prime factorization of n? Explain.

Consider the number 120 = 23 X 3 X 5. Which of the following is a factor of 120? Briefly explain how you know
for each answer.

I am thinking of a number less than 100; call it M. One of M’s factors is 12.

(@) What can you already say about M’s prime factorization? Explain.

(b) What numbers other than 12 are also factors of M? How do you know?

(c) Suppose 5 is also a factor of M. What additional factors of M can you now identify?

Consider the number 68. Use the number’s prime factorization to find all of its factors. Explain your process.

Let K = 312 X 832 be the prime factorization of K. List every counting number that is a factor of K without com-
puting the value of K. Explain briefly how to do this.
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Group Discussion Questions
e Describe a method for finding the factors of a number using the number’s prime factorization. Use the number 18
to illustrate this method.

e A traditional definition of a factor of a number N is as follows: “A is a factor of N if N = A X B, where A and B are
counting numbers.” Use prime factorization to describe a new way to define a factor of a number.
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Lesson 3

Use your grid from the prehomework to find 2 different numbers with 2, 3, 4, 5, and 6 factors. Compile your results
with the rest of the class. How do you know they have the same number of factors?

Type of No. Examples Prime Factorizations

Numbers With
2 factors

Numbers With
3 factors

Numbers With
4 factors

Numbers With
5 factors

Numbers With
6 factors
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1. How many factors does each of the following numbers have? Explain without computing their values.

(a) 22 (b) 23 (c) 24 (d) 2n, where n'is
some counting
number

2. (@ How many factors does 23 X 3 have?
(b) How many factors does 23 X 3? have?
() How many factors does 23 X 33 have?

(d) Predict the number of factors for 23 X 3", where n is any positive integer. Explain your prediction.

3. Order the following numbers from having the greatest number of factors to having the least number of factors
(explain any ties): 50, 51, 52, 53, 54, 55

Group Discussion Question

e What information does the prime factorization of a number provide about the number of factors it has? Use
examples to illustrate your point.
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Encouraging Use of Multiplicative Structure
Homework 1

Directions

Rewrite each integer below as a product of prime numbers (i.e., prime factorization). You are encouraged to use any

method you want to complete this task. Be prepared to explain the process that you used to complete this task. Then
answer the follow-up questions.

91 92 93 94 95 9% 97 98 99 100
81 82 83 84 85 86 87 88 89 90
71 72 73 74 75 76 77 78 79 80
61 62 63 64 65 66 67 68 69 70
51 52 53 54 55 56 57 58 59 60
4 42 43 44 45 46 47 48 49 50
31 32 33 34 35 36 37 38 39 40
21 22 23 24 25 26 27 28 29 30
11 12 13 14 15 16 17 18 19 20
1 2 3 4 5 6 7 8 9 12

1. Explain how you completed the grid. Use examples to illustrate your method(s).

2. Describe any discoveries you made or patterns you noticed when completing the grid.
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Homework 2

Directions

Answer all questions below in the spaces provided. Show all calculations and explain your responses thoroughly.
Answers without adequate explanations or work shown will not receive credit.

1. Consider a number, N, whose prime factorization is N = 2> X 32 X 7 X 11. Without computing the value of N,
decide if each of the following numbers is a factor of N. Explain each choice briefly.

@3 (c) 18 (e) 35
(b) 6 d) 30 (f) 40

2. If a fifth grader states, “Larger numbers have more factors than smaller numbers,” what numbers will you give him
to investigate? Why those numbers?

3. A number, X, has 10 and 3 as two of its factors. What other number(s) must be factors of X? How do you know?
4. 1s 3% X 2*afactor of 3% X 222 Explain why or why not.

5. Consider the number M = 31 X 72 X 23, where 31, 7, and 23 are prime numbers. List all the factors of M without
computing the value of M first. Clearly show or explain how you were able to find all of the factors.

6. (@) If both 3 and 5 are factors of a number x, must 15 be a factor of x2 Why or why not?

(b) If 4 and 6 are factors of a number y, must 24 be a factor of y? Why or why not?

7. Jennifer and Billie are having an argument. Both have constructed a factor tree for 132. Jennifer claims that the
two trees are the same. Billie claims that the two trees are different. What, do you suppose, is the source of their
confusion? Give examples. How would you resolve their argument?
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Encouraging Use of Multiplicative Structure

Appendix B: Pretest and Posttest Scoring Rubrics

Pretest Scoring Rubric

Total Points = 25

1. Consider the number N = 32 X 5% X 11 X 173. Without calculating the value of N, determine whether each of the
following is a factor of N. Justify each decision briefly.
@35 (© 15 () 75
(b) 19 (d) 21

Suggested Solutions
(@ Yes, because 5 is in the prime factorization of N (argument 1).
(b) Yes, because 5 X (32 X 53 X 11 X 17%) = N, so N + 5 results in a whole number (argument 2).
() No, because 19 is not in the prime factorization of N.

Yes, because 15 is in the prime factorization of N as 3 X 5 (argument 1); yes, because N = (3 X 5) X (3 X 53
X 11 X 17%) =15 X (3 X 53 X 11 X 17%), so N = 15 results in a whole number (argument 2).

(d) No, because 21 = 3 X 7 but there is no 7 in the prime factorization of N, so 21 is not in the prime factoriza-
tion of N.

(e) Yes, because 75 is in the prime factorization of N as 3 X 5 X 5 (argument 1); yes, because N = (3 X 5 X 5) X
(B3 X 52X 11 X173 =75 X (3 X 52X 11 X 173), so N + 75 results in a whole number (argument 2).

Scoring Criteria (10 possible points):
e 1 point for each correct (yes/no) response

e 1 point for each correct and complete argument (only one argument is needed). The argument should make refer-
ence to the prime factorization to be complete (e.g., it is not sufficient to say “19 is not a factor because 19 is not a
factor” or “5 is a factor because 52 is in the number”).

2. (a) Listall the factors of 225. Show how you found all of them.

Suggested Solution

@@ 1,3,5,9 15,25, 45, 75, and 225. Demonstration of reasoning can include at least one of the following: long
division, factor trees, prime factorization combinations, factor pairs, or any reasonable method.
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Scoring Criteria (5 possible points):

e 3 points possible for identifying factors

o

(0]

o

Give 3 points if 9 factors are correctly identified.

Give 2 points if 7-8 factors are correctly identified.
Give 1 point if 3—6 factors are correctly identified.
Give 0 points if 0-2 factors are correctly identified.

Note: Net out any incorrect factors from the number of correct factors to determine how many points should
be recorded.

e 2 points possible for demonstration of reasoning

(0]

(0]

(b)

Give 2 points if work is correct and clearly and explicitly shows how the list of factors was determined.

Give 1 point if work shown is a reasonable method but there is limited clarity around how the list of factors
was determined.

Give 0 points if work is not shown or is incorrect or no list of factors is generated.

List all the factors of 5 X 72. Show how you found all of them.

Suggested Solution

(b)

1,5,7,5% 72,5 X 7,52 % 7,5 X 72, and 5? X 72. Demonstration of reasoning must employ the use of prime
factorization to find prime factor combinations.

Scoring Criteria (5 possible points):

* 3 points possible for identifying factors

O
(¢}
O
O

o

Give 3 points if all 9 factors are correctly identified.
Give 2 points if 7-8 factors are correctly identified.
Give 1 point if 3—6 factors are correctly identified.

Give 0 points if 0-2 factors are correctly identified.

Note: Net out any incorrect factors from the number of correct factors to determine how many points should
be recorded.

e 2 points possible for demonstration of reasoning

o

Give 2 points if work correctly uses uncoordinated and coordinated prime factor combinations to clearly and
explicitly show how the list of factors was determined.

Give 1 point if work shown uses prime factor combinations but there is limited clarity about how the list of
factors was determined or either uncoordinated or coordinated prime factor combinations are missing.

Give 0 points if prime factor combinations are not used, work is incorrect, or no list of factors is generated.

3. What is the smallest positive integer that has the first ten counting numbers, 1-10, as its factors? Show or explain
your work so that others can follow your logic. Note: You may leave your answer in factored form.
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Encouraging Use of Multiplicative Structure
Suggested Solution

The smallest positive integer that is divisible by all of the first ten counting numbers is 2,520. Since the number must
be divisible by 1-10, we can build its prime factorization to include all these numbers as factors. The prime factoriza-
tion is as follows: 23 X 32 X 5 X 7. In this prime factorization, we see that 2, 3, 5, and 7 are factors because they are
prime factors of the number. Since 23 is part of the prime factorization of the number, 4 and 8 are also factors. Since 32
is represented, 9 is also a factor. Since 2 and 3 are represented as prime factors, then 6 is also a factor of the number,
and since 2 and 5 are represented as prime factors of the number, 10 is also one of its factors. As always, 1 is a factor
of any whole number. The number 2,520 is the smallest positive integer that satisfies the given criterion because if any
of the prime factors are removed from its prime factorization, at least one of the first ten counting numbers will cease
to be its factor.

Scoring Criteria (5 possible points):
e 3 points for correctly identifying the solution as 2,520 OR as 23 X 32 X 5 X 7.

o Give 2 points for this section if solution has 1 error (e.g., gives close to correct prime factorization but includes
2% or 3% or leaves out a 7).

o Give 1 point for this section if solution has 2-3 errors (e.g., includes a 2% and a 3* in the prime factorization, or
just multiplies 1 X 2 X 3 X ... X 9 X 10 = 3,628,800.)

o Give 0 points for this section if solution has more than 3 errors.

e 2 points for correct reasoning.

o Give 2 points if reasoning is correct and complete (i.e., the work shown and/or explanation given fully explain
why the provided solution is correct).

o Give 1 point if reasoning is partially correct or incomplete (i.e., the work shown and/or explanation given do
not address all necessary points or shows incorrect reasoning at times).

o Give 0 points if reasoning is nonexistent or completely incorrect (i.e., the work shown and/or explanation
given do not address any necessary points or shows incorrect reasoning throughout).
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Posttest Scoring Rubric

Total Points =25

1. Consider the number N = 23 X 54 X 72 X 13. Without calculating the value of N, determine whether each of the
following is a factor of N. Justify each decision briefly.

Suggested Solutions
(@ No, because 11 is not in the prime factorization of N.

(b) Yes, because 7 is in the prime factorization of N (argument 1); yes, because 7 X (23 X 54 X 7 X 13) = N,
so N + 7 results in a whole number (argument 2).

(© Yes, because 14 is in the prime factorization of N as 2 X 7 (argument 1); yes, because N = (2 X 7) X (2% X 54
X 7 X 13)=14 X (23 X 5* X 7 X 13), so N + 14 results in a whole number (argument 2).

(d) No, because 21 = 3 X 7, but there is no 3 in the prime factorization of N, so 21 is not in the prime factoriza-
tion of N.

(e) Yes, because 98 is in the prime factorization of N as 2 X 7 X 7 (argument 1); yes, because N = (2 X 7 X 7) X
(22 X 5% X 13) =98 X (22 X 5% X 13), so N =+ 98 results in a whole number (argument 2).

Scoring Criteria (10 possible points):
e 1 point for each correct (yes/no) response

e 1 point for each correct and complete argument (only one argument is needed). The argument should make refer-
ence to the prime factorization to be complete (e.g., it is not sufficient to say “11 is not a factor because 11 isn't a
factor” or “7 is a factor because 72 is in the number”).

2. (a) List all the factors of 300. Show how you found all of them.

Suggested Solution

@ 1,2,3,4,5 6,10, 12, 15, 20, 25, 30, 50, 60, 75, 100, 150, and 300. Work shown can include at least
one of the following: long division, factor trees, prime factorization combinations, factor pairs, or any
reasonable method.

Scoring Criteria (5 possible points):

e 3 points possible for identifying factors
o Give 3 points if all 18 factors are correctly identified.
o Give 2 points if 14-17 factors are correctly identified.

o Give 1 point if 3-13 factors are correctly identified.
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Encouraging Use of Multiplicative Structure
o Give 0 points if 0-2 factors are correctly identified.

o Note: Net out any incorrect factors from the number of correct factors to determine how many points should
be recorded.

e 2 points possible for demonstration of reasoning
o Give 2 points if work is correct and clearly and explicitly shows how the list of factors was determined.

o Give 1 point if work shown is a reasonable method but there is limited clarity about how the list of factors
was determined.

o Give 0 points if work is not shown or is incorrect or no list of factors is generated.

2. (b) List all the factors of 52 X 7 X 132. Show how you found all of them.

Suggested Solution

(b) 1,5,7,13,5%,13%,5 X 7,5 X 13,7 X 13,52 X 7,52 X 13,5 X 132, 7 X 132,5 X 7 X 13,52 X 7 X 13,5 X
7 X 132,52 X 132, and 52 X 7 X 132, Work shown must center around using the prime factorization to find
prime factor combinations.

Scoring Criteria (5 possible points):

e 3 points possible for identifying factors
o Give 3 points if all 18 factors are correctly identified.
o Give 2 points if 14-17 factors are correctly identified.
o Give 1 point if 3-13 factors are correctly identified.
o Give 0 points if 0-2 factors are correctly identified.

o Note: Net out any incorrect factors from the number of correct factors to determine how many points should
be recorded.

e 2 points possible for demonstration of reasoning

o Give 2 points if work correctly uses uncoordinated and coordinated prime factor combinations to clearly and
explicitly show how the list of factors was determined.

o Give 1 point if work shown uses prime factor combinations but there is limited clarity around how the list of
factors was determined or either uncoordinated or coordinated prime factor combinations are missing.

o Give 0 points if prime factor combinations are not used, work is incorrect, or no list of factors is generated.

3. What is the smallest positive integer that has the first ten counting numbers, 1-10, as its factors? Show or explain
your work so that others can follow your logic.

Note: you may leave your answer in factored form.
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Suggested Solution

The smallest positive integer that is divisible by all of the first ten counting numbers is 2,520. Since the number must
be divisible by 1-10, we can build its prime factorization to include all these numbers as factors. The prime factoriza-
tion is as follows: 23 X 32 X 5 X 7. In this prime factorization, we see that 2, 3, 5, and 7 are factors because they are
prime factors of the number. Since 23 is part of the prime factorization of the number, 4 and 8 are also factors. Since 3?
is represented, 9 is also a factor. Since 2 and 3 are represented as prime factors, then 6 is also a factor of the number,
and since 2 and 5 are represented as prime factors of the number, 10 is also one of its factors. As always, 1 is a fac-
tor of any whole number. The smallest positive integer that satisfies the given criterion is 2,520 because if any of the
prime factors are removed from its prime factorization, at least one of the first ten counting numbers will cease to be
its factor.

Scoring Criteria (5 possible points):

e 3 points for correctly identifying the solution as 2,520 or as 23 x 3> x 5 x 7.

o Give 2 points for this section if solution has 1 error (e.g., gives close-to-correct prime factorization but
includes 24 or 33 or leaves out a 7).

o Give 1 point for this section if solution has 2-3 errors (e.g., includes a 2* and a 3* in the prime factorization, or
just multiplies T X 2 X 3 X ... X 9x 10 = 3,628,800).

o Give 0 points for this section if solution has more than 3 errors.

e 2 points for correct reasoning.

o  Give 2 points if reasoning is correct and complete (i.e., work shown and/or explanation given fully explain
why the provided solution is correct).

o Give 1 point if reasoning is partially correct or incomplete (i.e., work shown and/or explanation given do not
address all necessary points or shows incorrect reasoning at times).

o Give 0 points if reasoning is nonexistent or completely incorrect (i.e., work shown and/or explanation given
do not address any necessary points or shows incorrect reasoning throughout).
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